On the Mints Hierarchy in First-Order Intuitionistic Logic

نویسندگان

  • Aleksy Schubert
  • Pawel Urzyczyn
  • Konrad Zdanowski
چکیده

We stratify intuitionistic first-order logic over (∀,→) into fragments determined by the alternation of positive and negative occurrences of quantifiers (Mints hierarchy). We study the decidability and complexity of these fragments. We prove that even the ∆2 level is undecidable and that Σ1 is Expspace-complete. We also prove that the arity-bounded fragment of Σ1 is complete for co-Nexptime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Functional Programs with Help of First-Order Intuitionistic Logic

Curry-Howard isomorphism makes it possible to obtain functional programs from proofs in logic. We analyse the problem of program synthesis for ML programs with algebraic types and relate it to the proof search problems in appropriate logics. The problem of synthesis for closed programs is easily equivalent to the proof construction in intuitionistic propositional logic and thus fits in the clas...

متن کامل

Invited talk: On Differences in Proofs Between Intuitionistic and Classical Logic

The presentation will contrast the complexity results for proving assertions in classical and intuitionistic logic. The comparison will be built upon the known results for propositional logic and predicate one. The predicate case will be based upon the Mints hierarchy in intuitionistic logic which will be contrasted with its counterpart i.e. the prenex hierarchy in classical logic. The di erenc...

متن کامل

Intuitionistic Existential Instantiation and Epsilon Symbol

A natural deduction system for intuitionistic predicate logic with existential instantiation rule presented here uses Hilbert’s ǫ-symbol. It is conservative over intuitionistic predicate logic. We provide a completeness proof for a suitable Kripke semantics, sketch an approach to a normalization proof, survey related work and state some open problems. Our system extends intuitionistic systems w...

متن کامل

The Complexity of the Disjunction and ExistentialProperties in

This paper considers the computational complexity of the disjunc-tion and existential properties of intuitionistic logic. We prove that the disjunction property holds feasibly for intuitionistic propositional logic; i.e., from a proof of A _ B, a proof either of A or of B can be found in polynomial time. For intuitionistic predicate logic, we prove superexponential lower bounds for the disjunct...

متن کامل

Interpolation theorems for intuitionistic predicate logic

Craig interpolation theorem (which holds for intuitionistic logic) implies that the derivability of X,X’-¿Y’ implies existence of an interpolant I in the common language of X and X’-¿Y’ such that both X-¿I and I,X’-¿Y’ are derivable. For classical logic this extends to X,X’-¿Y,Y’, but for intuitionistic logic there are counterexamples. There is a version true for intuitionistic propositional (b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2015